

# COMPSCI 389 Introduction to Machine Learning

#### **Gradient Descent**

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

## **Optimization Perspective**

• Recall:

$$\operatorname{argmin}_{w} L(w, D)$$

- Viewing L(w, D) as a function, f, of just the weights (and a fixed data set):  $\operatorname{argmin}_{w} f(w)$
- Note that this is equivalent to maximizing a different function, where g=-f argmax $_w g(w)$
- We could also write x instead of w:

$$\operatorname{argmin}_{x} f(x)$$

- The function being optimized (minimized or maximized) is called the **objective function** (optimization terminology).
  - In this case, our objective function is a loss function (machine learning terminology).
- Question: How do we find the input that minimizes a function?

### **Local Search Methods**

- Start with some initial input,  $x_0$
- Search for a nearby input,  $x_1$ , that decreases f:

$$f(x_1) < f(x_0)$$

• Repeat, finding a nearby input  $x_{i+1}$  that decreases f (for each iteration i):

$$f(x_{i+1}) < f(x_i)$$

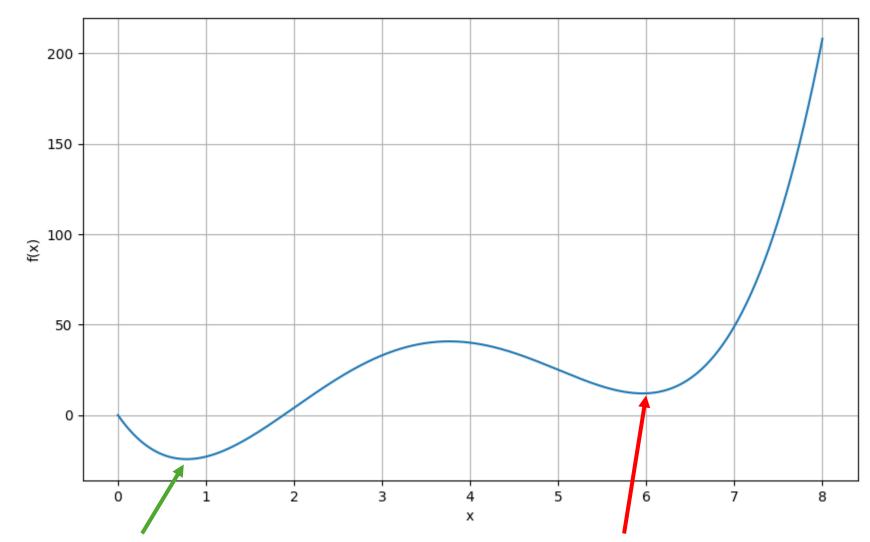
- Stop when:
  - You cannot find a new input that decreases f
  - The decrease in f becomes very small
  - The process runs for some predetermined amount of time
- Called "local search methods" because they search locally around some current point,  $x_i$ .

## "Find a nearby point that decreases f"

- We will consider gradient-based optimizers.
- At any input/point x, we can query:
  - f(x): The value of the objective function at the point
  - $\frac{df(x)}{dx}$ : The derivative of the objective function at the point
    - This is the **gradient**, and is also written as  $\nabla f(x)$

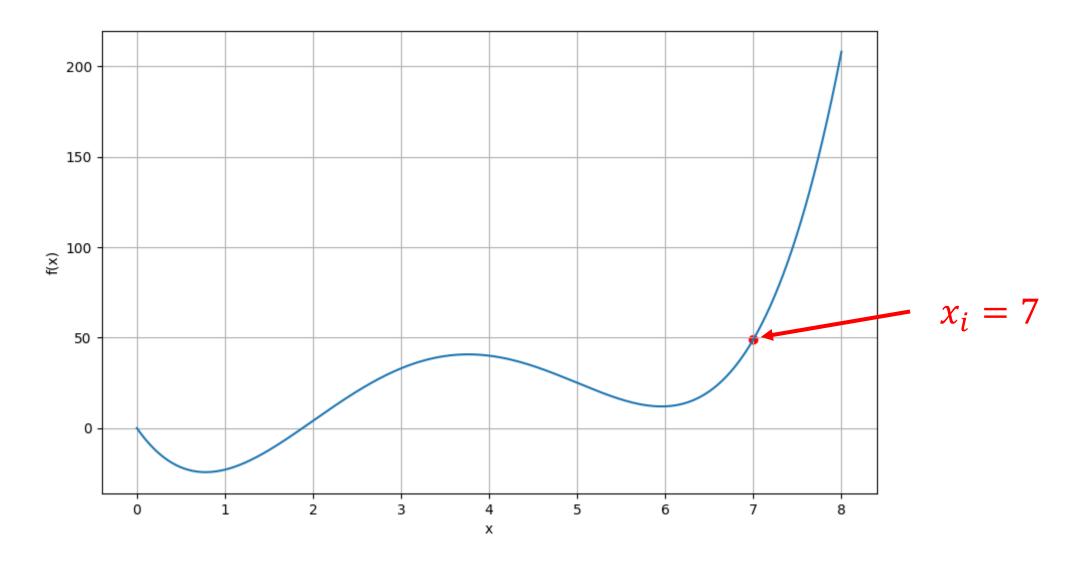
**Question:** Is a global minimum a local minimum?

**Answer:** Yes!

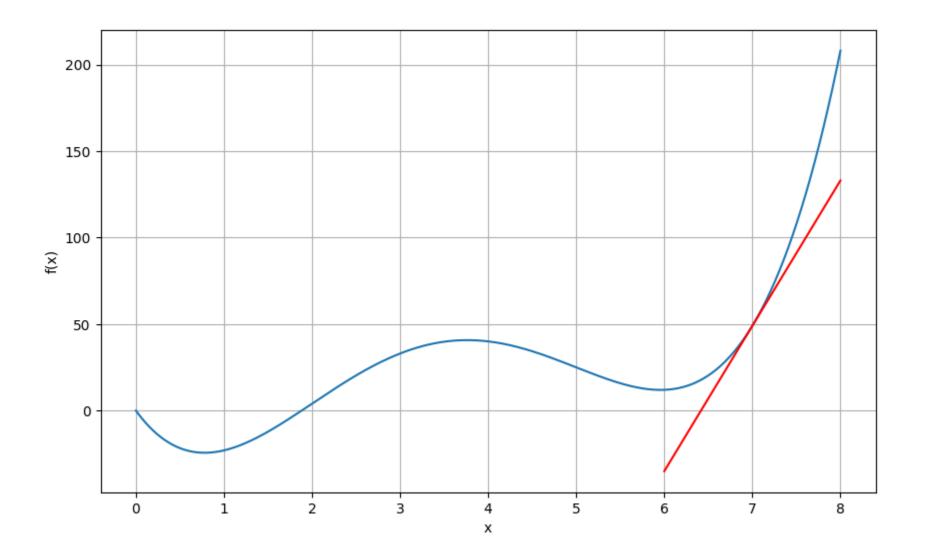


**Global minimum**: A location where the function achieves the lowest value (the argmin).

**Local minimum**: A location where all nearby (adjacent) points have higher values.



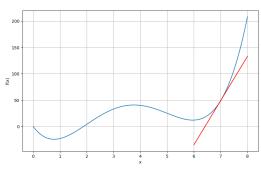
**Question**: How can we find a point  $x_{i+1}$  such that  $f(x_{i+1}) < f(x_i)$ ? That is, a point that is "lower"? [6] **Idea**: Move a small amount "downhill"



**Notice:** The slope of the function tells us which direction is uphill / downhill. **Positive slope:** Decrease  $x_i$  to get  $x_{i+1}$ . **Negative slope:** Increase  $x_i$  to get  $x_{i+1}$ .

7





• Take a step of length  $\alpha$  (a small positive constant) in the opposite direction of the slope:

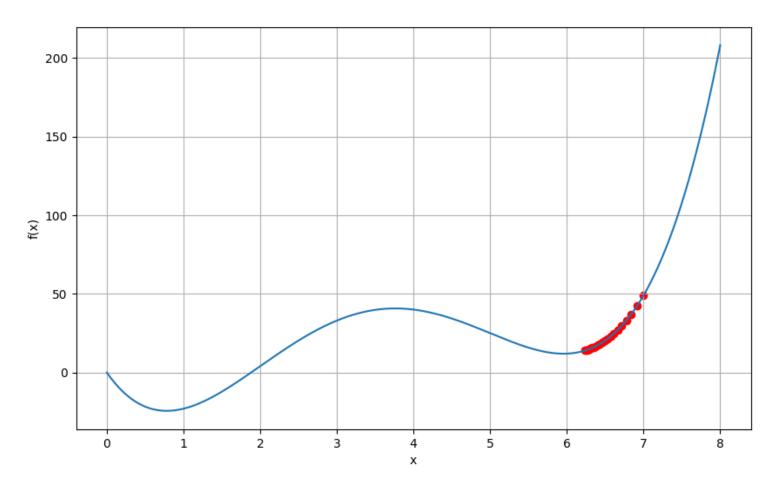
$$x_{i+1} = x_i - \alpha \times \text{slope}.$$

• Note: The slope is  $\frac{df(x)}{dx}$ , so we can write:  $x_{i+1} = x_i - \alpha \frac{df(x)}{dx}.$ 

$$x_{i+1} = x_i - \alpha \frac{df(x)}{dx}.$$

•  $\alpha$  is a hyperparameter called the **step size** or **learning rate**.

Gradient descent, 
$$x_0 = 7$$
,  $\alpha = 0.001$   
 $f(x) = x^4 - 14x^3 + 60x^2 - 70x$ 

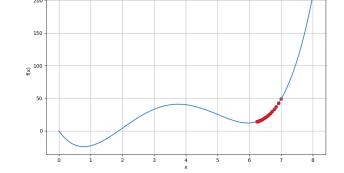


**Question**: Why do the points get closer together when we use the same step size,  $\alpha$ ?

Why do the points get closer together when

we use the same step size,  $\alpha$ ?

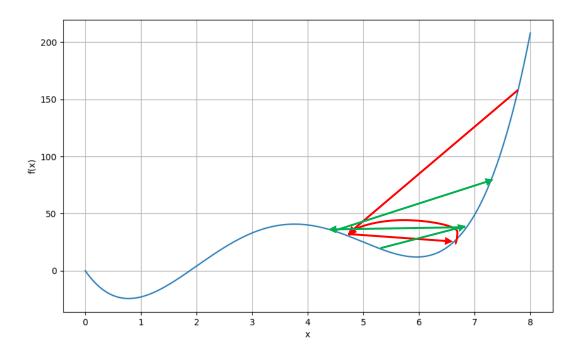
$$x_{i+1} = x_i - \alpha \frac{df(x)}{dx}$$



- As  $x_i$  approaches a local optimum, the slope goes to zero.
- This allows for "convergence" to a local optimum.
- Gradient descent can still overshoot the (local) minimum.
- If the step size is small enough (or decayed appropriately over time), gradient descent is guaranteed to converge to a local minimum.
  - If it overshoots a minimum by a small amount, it will reverse direction and move back towards the minimum.

## Overshooting and Divergence

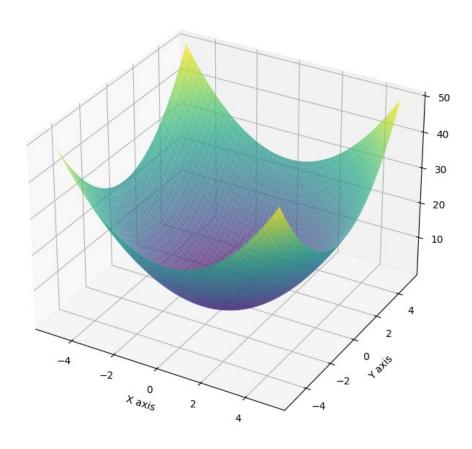
• If the step length was constant and too big, it could forever overshoot the (local) minimum, diverging or oscillating (not making progress towards the local minimum).



### Multidimensional Gradient Descent

- What if the function, f, takes many inputs?
  - Our loss function, L(w,D) takes the weight vector w as input
    - We view D as fixed.
  - For now, consider a function f(x, y), where x and y are two real numbers.

$$f(x,y) = x^2 + y^2$$



# Consider the point (3,3)

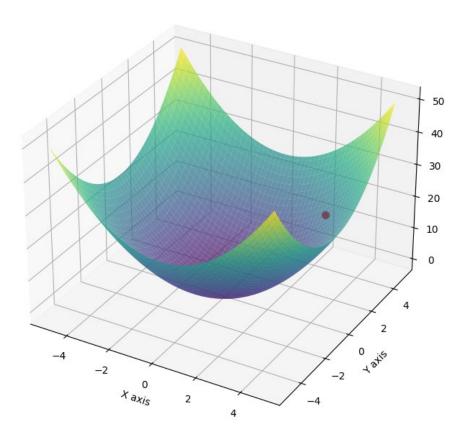
**Question**: How can we find a new point that is "downhill"?

**Idea**: Compute the slope along each axis!

*x*-slope: 
$$\frac{\partial f(x,y)}{\partial x}$$
  
*y*-slope:  $\frac{\partial f(x,y)}{\partial y}$ 

The **gradient** is the concatenation of the slopes along each dimension/axis:

$$\nabla f(x) = \left[ \frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y} \right]$$



### The Gradient

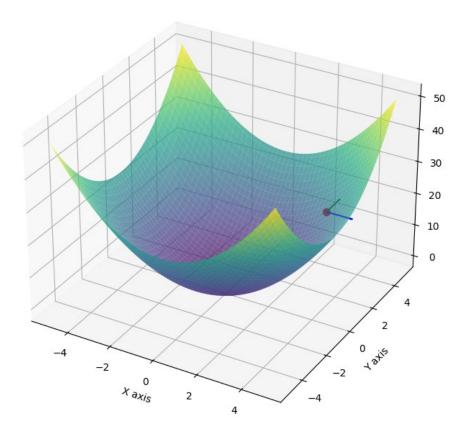
**Question**: How can we find a new point that is "downhill"?

**Idea**: Compute the slope along each axis!

*x*-slope: 
$$\frac{\partial f(x,y)}{\partial x}$$
  
*y*-slope:  $\frac{\partial f(x,y)}{\partial y}$ 

The **gradient** is the concatenation of the slopes along each dimension/axis:

$$\nabla f(x) = \left[ \frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y} \right]$$



Note: The gradient is also called the "direction of steepest ascent". It indicates how to change each input to go up-hill as quickly as possible.

**Gradient Descent**: Move both x and y in the negative direction of their slopes. That is, move in the opposite direction of the gradient:

$$x_{i+1} = x_i - \alpha \frac{\partial f(x_i, y_i)}{\partial x_i}$$

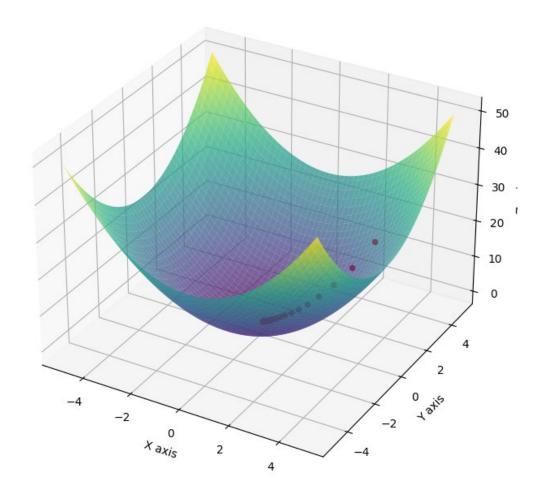
$$y_{i+1} = y_i - \alpha \frac{\partial f(x_i, y_i)}{\partial y_i}$$

$$OR$$

$$(x_{i+1}, y_{i+1}) = (x_i, y_i) - \alpha \nabla_t f(x_i, y_i)$$

# Gradient Descent on $f(x, y) = x^2 + y^2$ $(x_0, y_0) = (3,3), \alpha = 0.7$

Gradient Descent on 3D Surface



# Pseudocode: Gradient Descent on f(x)

- **Hyperparameter**: Step size  $\alpha$ . Typically a small constant like 0.1, 0.01, 0.001, ...
- **Assumption**: *f* is a function that takes a vector (or single real number) as input and produces a single real number as output.
- **Assumption**: *f* is smooth (differentiable)
- Method:
  - Select an arbitrary initial point,  $x_0$  (a vector).
  - For each iteration i, set  $x_{i+1} = x_i \alpha \nabla f(x_i)$ . Equivalently, for each element of  $x_i$  (indexed by j):

$$x_{i+1,j} = x_{i,j} - \alpha \frac{\partial f(x_i)}{\partial x_{i,j}}$$

Stop when progress becomes slow or after some fixed amount of time.

## Gradient Descent: Adaptive Step Sizes

- Tuning the step size,  $\alpha$ , can be challenging.
- Adaptive step size methods measure properties of the function over time to adapt the step size automatically.
  - Many methods (ADAGRAD, ADAM, etc.)
  - Some change not only the length of the step, but also the *direction* of the step!
  - Details beyond the scope of this course.

# Gradient Descent for Minimizing Sample MSE (Linear Parametric Model)

$$\operatorname{argmin}_{w} L(w, D)$$

- Initialize  $w_0$  arbitrarily.
- Iterate:

$$w_{i+1} \leftarrow w_i - \alpha \frac{\partial L(w_i, D)}{\partial w_i}$$

• Equivalently, for each weight (indexed by j):

$$w_{i+1,j} \leftarrow w_{i,j} - \alpha \frac{\partial L(w_i, D)}{\partial w_{i,j}}$$

• To implement this, we need to know  $\frac{\partial L(w_i,D)}{\partial w_{i,j}}$ 

# What is $\frac{\partial L(w_i, D)}{\partial w_{i,i}}$ ?

$$L(w_i, D) = \frac{1}{n} \sum_{i'=1}^{n} \left( y_{i'} - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'}) \right)^{n}$$

**Question**: Why  $\Sigma_{j'}$  rather than  $\Sigma_{j}$ ?

Answer: We already used the symbol *j* to denote the weight we are taking the derivative with respect to. So, we use a different symbol for the index of the summation.

$$\frac{\partial L(w_{i}, D)}{\partial w_{i,j}} = \frac{1}{n} \sum_{i'=1}^{n} \frac{\partial}{\partial w_{i,j}} \left( y_{i'} - \sum_{j'=1}^{n} w_{i,j'} \phi_{j'}(x_{i'}) \right)^{2}$$

$$\frac{\partial L(w_{i}, D)}{\partial w_{i,j}} = \frac{1}{n} \sum_{i'=1}^{n} \frac{\partial}{\partial w_{i,j}} \left( y_{i'} - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'}) \right)^{2}$$

$$\frac{\partial L(w_{i}, D)}{\partial w_{i,j}} = \frac{1}{n} \sum_{i'=1}^{n} 2 \left( y_{i'} - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'}) \right) \frac{\partial}{\partial w_{i,j}} \left( y_{i'} - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'}) \right)^{2}$$

$$\frac{\partial L(w_{i}, D)}{\partial w_{i,j}} = \frac{-1}{n} \sum_{i'=1}^{n} 2 \left( y_{i'} - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'}) \right) \frac{\partial}{\partial w_{i,j}} \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'})$$

$$\frac{\partial L(w_{i}, D)}{\partial w_{i,j}} = \frac{-1}{n} \sum_{i'=1}^{n} 2 \left( y_{i'} - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'}) \right) \phi_{j}(x_{i'})$$

 $\frac{\partial}{\partial w_{i,j}} \sum_{i',j'} w_{i,j'} \phi_{j'}(x_{i'}) = \frac{\partial}{\partial w_{i,j}} w_{i,j} \phi_j(x_{i'}) = \phi_j(x_{i'})$ 

# Gradient Descent for Minimizing Sample MSE (Linear Parametric Model)

• For each weight (indexed by *j*):

$$w_{i+1,j} \leftarrow w_{i,j} - \alpha \frac{\partial L(w_i, D)}{\partial w_{i,j}}$$

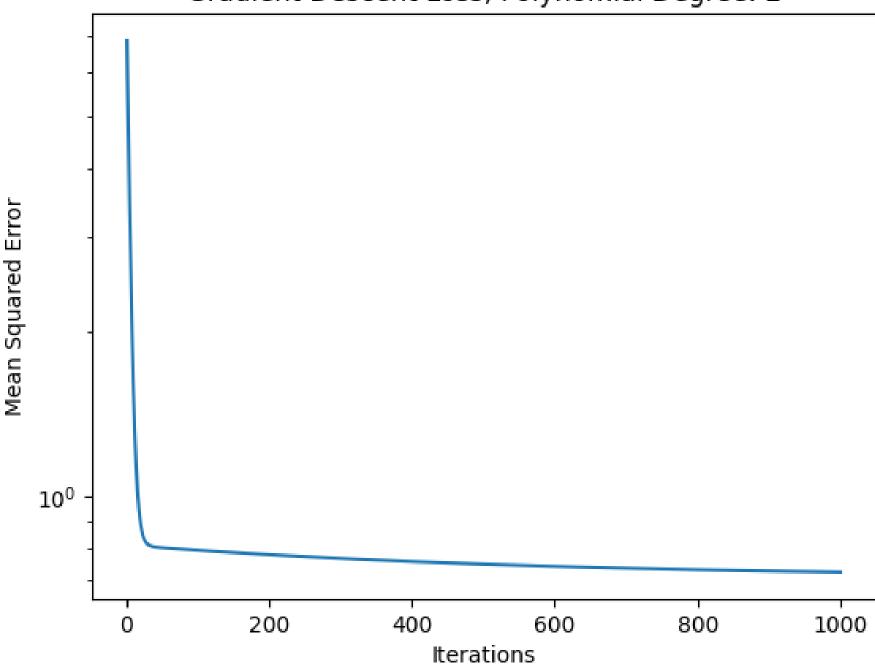
• Where:

$$\frac{\partial L(w_i, D)}{\partial w_{i,j}} = \frac{-1}{n} \sum_{i=1}^{n} 2 \left( y_i - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_i) \right) \phi_j(x_i)$$

• So, for each weight (indexed by *j*);

$$w_{i+1,j} \leftarrow w_{i,j} + \alpha \frac{1}{n} \sum_{i=1}^{n} 2 \left( y_i - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_i) \right) \phi_j(x_i)$$

Gradient Descent Loss, Polynomial Degree: 2



| T1 11 4/4000 1 4 0000                                                                           |    |
|-------------------------------------------------------------------------------------------------|----|
| Iteration 1/1000, Loss: 6.8922                                                                  |    |
| Iteration 2/1000, Loss: 5.6614                                                                  |    |
| Iteration 3/1000, Loss: 4.6794  Thereties 4/1000, Loss: 2.0000  Iteration 19/1000, Loss: 0.9081 |    |
| Iteration 4/1000, Loss: 3.8960                                                                  |    |
| Iteration 5/1000, Loss: 3.2710 Iteration 20/1000, Loss: 0.8868                                  |    |
| Iteration 6/1000, Loss: 2.7724 Iteration 21/1000, Loss: 0.8698                                  |    |
| Iteration 7/1000, Loss: 2.3746                                                                  |    |
| Iteration 8/1000, Loss: 2.0572                                                                  |    |
| Iteration 9/1000, Loss: 1.8040                                                                  |    |
| Iteration 10/1000, Loss: 1.6019                                                                 |    |
| Iteration 11/1000, Loss: 1.4407                                                                 | _  |
| Iteration 12/1000, Loss: 1.3120 Iteration 997/1000, Loss: 0.7177                                | 7  |
| Iteration 13/1000, Loss: 1.2093                                                                 | 7  |
| Iteration 14/1000, Loss: 1.1274                                                                 | 6  |
| Iteration 15/1000, Loss: 1.0619                                                                 | 76 |

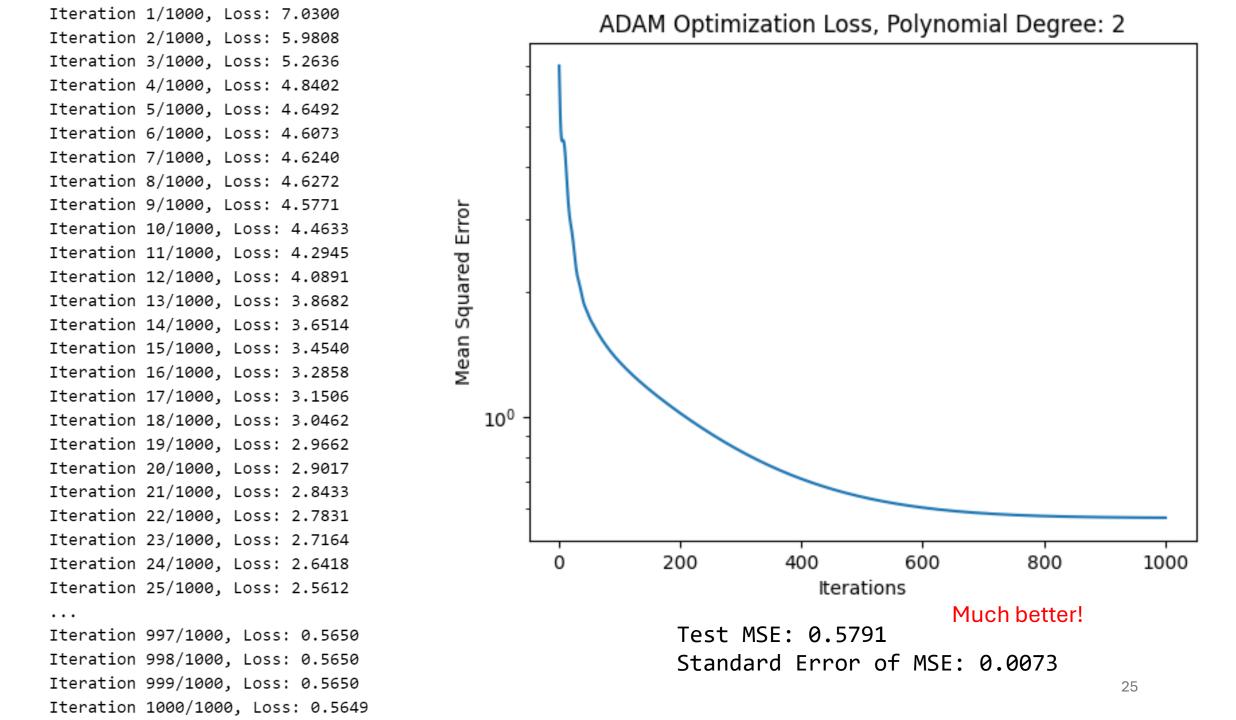
Test MSE: 0.7856 Standard

Error of MSE: 0.0084

Not very good!

## Least Squares with Linear Parametric Model

- Question: Why was the final MSE so large (0.78)?
  - Other methods achieved ~0.57
- Answer:
  - Better weights likely exist!
  - Gradient descent was making very slow progress at the end.
- Idea: Let's try using an adaptive step size method, ADAM.



# End

